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ABSTRACT

The theoretical aspects of a mathematical model to forecast the flood
hydrograph resulting from a breached dam are presented. The model is
composed of two basic elements. The first simulates the outflow hydrograph
due to a time-dependent, erosion-type breach of a dam using a hydraulic
weir representation of the outflow through the breach while simultaneously
considering the effects of the reservoir storage depletion and the
inflow hydrograph via either a storage or dynamic routing technqiue.

The second element routes the generated outflow hydrograph through the
downstream valley via an implicit finite difference solution of the
complete one-dimensional equations of unsteady flow. Essential input
data consists of: (1) the geometrical and temporal description of the
breach, (2) the reservoir depth, length, and either storage-elevation

or top width-elevation tables, and (3) the Manning roughness coefficient-
elevation and top width-elevation tables for the downstream valley.

A minimal number of tables can be specified since the numerous computa-
tional sections required in the finite difference solution of rapidly
varying dam-break waves are generated within the model via interpolation.
The model is applied to the dam-break floods which resulted from the
failures of the Teton Dam and the Buffalo Creek coal-waste dam to test
its ability to reconstitute observed downstream peak stages, discharges,
and travel times., Simulation accuracy, computer requirements, input
parameter sensitivities, and numerical computational characteristics

are presented for each of the applications.

INTRODUCTION

The National Weather Service (NWS) has the responsibility to advise
the public of downstream flooding when there is a failure of a dam
having an impoundment of water. Although this type of flood has many
similarities to floods produced by precipitation runoff (the latter
being the type of flood that the NWS has over the years developed the
technology and expertise to forecast), the dam-break flood has some
very important differences which make it difficult to analyze with the
common techniques which have worked so well for the precipitation-
runoff floods. This situation was recently recognized when the Teton
Dam failed and the NWS River Forecast Center (RFC) in Portland had the
responsibility for providing flood warnings (expected peak stages,
discharges, and times of occurrence) for communities of the Teton-
Snake River Valley downstream of the Teton Dam.



The potential for catastrophic flooding due to dam failures has
recently been brought to the Nation's attention by several dam
failures such as the Buffalo Creek coal-waste dam, the Rapid City Dam,
the Teton Dam, and the Johnstown Dam. A report by the U.S. Department
of the Army [1975] gives an inventory of the Nation's approximately
49,000 dams with heights greater than 25 feet or storage volumes in
excess of 50 acre-feet. The report also classifies some 20,000 of
these as being "so located that failure of the dam could result in
loss of human life and appreciable property damage ...." The NWS
considers the dam-break problem of sufficient importance to commence
a program for the development of a flood forecast procedure especially
designed to cope with the unique characteristics of dam-break floods.

In general, the forecasting of a dam-break flood comsists of three
parts; namely: (1) estimation of the mode of failure, i.e., the
temporal and geometrical description of the breach (opening in the dam
through which the impounded water escapes into the downstream valley);
(2) computation of the outflow discharge hydrograph produced by the
breach, including effects such as reservoir inflow and spillway and/or
turbine outflows; and (3) routing of the outflow hydrograph through
the downstream valley in order to determine the hydrograph modificationms,
the resulting water surface elevations (stages), and the flood-wave
travel times.

Some general requirements of a dam-break flood forecasting model are
considered to be the following: (1) the model should be general with
wide applicability; (2) it must be economically feasible to use in an
operational environment, i.e., it must have practical computational
requirements and it should require a reasonably small effort by the
forecaster to specify the necessary data; (3) it should be able to
function with various levels of input data ranging from rough estimates
and even guesses to complete data specifications (the latter may occur
when updating a forecast sometime after the failure has occurred and
more data are available or when using the model for hindcasting for
purposes of procedural development); (4) it must require data which
are available or which require minimal effort by the forecaster to
obtain; (5) the computational scheme should be robust, i.e., the
computations do not easily "blow up" or become unstable; and (6) the
nodel should be capable of simulating the most important characteristics
of each of the three component parts of dam-break floods as outlined above.

This paper presents the theoretical development and limited testing of
a dam-break flood forecasting model. Test applications include simulation
of observed peak stages, discharges, and travel times associated with
the catastrophic floods which resulted from the Teton Dam failure and
the collapse of the Buffalo Creek coal-waste dam.
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MODEL DEVELOPMENT

Breach Formation

The breach is the opening formed in the dam as it fails. The impounded
waters escape through the breach into the valley downstream of :the dam.
Many investigators [Ritter, 1892; Schocklitsch, 1891; Ré, 1946;

- Dressler, 1954; Stoker, 1957; Su and Barnes, 1969; Sakkas and
Strelkoff, 1973] of dam-break floods have assumed the breach is
complete, i.e., it encompasses the entire dam; and they have assumed
also that the breach is formed instantaneously. Others [Schocklitsch,
1891; Army Corps of Engineers, 1960, 1961] have recognized the need
for partial, instantaneous breaches in which the geometry of the

~ breach is rectangular, triangular, or trapezoidal. The assumption

of instantaneous and complete breaches, while attractive for reasons
of convenience when applying certain mathematical techniques for
analyzing dam-break flood waves, is not generally the most appropriate
assumption of the breach formation in many dam failures. This

is particularly true of earth and rock-fill dams which require

a finite interval of time for the breach to achieve its final form.
Also, masonry dams may fail as a partial breach which forms rapidly
with time but only approaching an instantaneous failure. The actual
failure mechanics are not well understood for either earth or masonry
dams. Some effort was made by [Cristofano, 1965] to better describe
the breach formation geometrically and temporally for erosion failures
of dams; however, this procedure also requires critical assumptions

to be made.

For reasons of simplicity, generality, wide applicability, and the
recognized uncertainty in the actual failure mechanism, the dam-break
flood forecasting model developed herein assumes the breach is time-
dependent with either rectangular, triangular, or trapezoidal shape.
Such a breach can closely approximate those breaches which approach
an instantaneous development. The variable geometry enables either
partial or complete breaches to be sirulated. The forecaster can
specify the geometrical shape, size, and formation time with a minimum
of parameters. This is most advantageous for updating or hindcasting
when particular information of the breach development may be available
from estimates by eye-witnesses or detailed surveys made after the eveat.
Selection of parameter values before the breach forms or after it forms
in the absence of any observation introduces a varying degree of
uncertainty in the forecast model; however, as will be shown later,
errors in the description of the breach formation and the resulting
cutflow hydrograph may be rapidly damped-out as the flood wave
advances downstream.

The assumed breach is shown in Fig. 1. It is assumed to start at a
specified elevation of the reservoir water surface (hy) with an initial
base width (b) which remairs constant as the breach forms or enlarges
via an erosion process at a constant rate from time t=0 to time t=T
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when the breach reaches its final size and shape. The geometrical
shape is controlled by the value assigned to b and by the parameter
z which defines the side slopes of the breach, i.e., 1 vertical

to z horizontal. The final size of the breach is controlled by

the minimum elevation hyy to which the bottom of the breach finally
reaches. A useful value for tracking with time the breach formation
is the instantaneous elevation of the breach bottom (hy) which

is given by the following expression:

by = h +-(ho-hbm)63¥£9 | OREST & v v e o e e e e e e @

h‘bzhbm- L2T ¢ o ¢ o o o o o o s o o o @ (2)

Thus, in this paper, the time-dependent complete or partial breach of
rectangular, triangular, or trapezoidal shape is described by five
parameters (h,, b, z, hpy, T).

Outflow Hydrograph

The outflow of the impounded waters through the breach is assumed to
be best approximated by broad-crested weir flow. The outflow through
the broad—crested weir is a function of the shape of the breach and
the head on the weir. The shape can be either rectangular (z=0),
triangular (b=0), or trapezoidal. The weir head is the difference
between the instantaneous water surface elevation (h) at a locatiomn a
short distance within the reservoir where drawdown effects are minimal
and the instantaneous bottom elevation (hp) of the breach or broad-
crested weir given as a function of time by Eqs. (1-2). An expression
for the instantaneous outflow (Q) through the breach is:

q, = cl(h-hb)l'5 + cz(h-hb)z's P )

where:

Cl 3.08 b Cv cs e o e e & e s s s 3 e & s o s e o @ & = = s > o (4)

<, 2.4 =z CuCg * v s v v v s vt vt e e (5)

in which ¢ is the correction due to the velocity of approach immediately
upstream of the breach and cg is the correction for submergence of
broad-crested weirs. The term in Eq. (3) containing cj denotes the
portion of weir flow through a rectangular weir of width b; the term
with co represents the portion of weir flow through a V-shaped weir

as is the case if the breach is of triangular shape or the end portions
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of a trapezoidal shaped breach. The velocity of approach correction
cy is approximated by the following expression [Brater, 1962]:

» 2
_ 0.75 v
Cv_lqo"!"g—_—__'(h._hé)-o-.-..o-.ooo-.---vooo.- (6)

in which g is the acceleration due to gravity and the prime (') super-
seript on h and hy denotes that these are evaluated at a slightly
previous time, and v is given by:

%,

in which By is the vertically averaged width of the reservoir in the
vicinity of the dam. The correction for the effects of submergence

are necessary when the water surface elevation (hy) of the flow down-—
stream of the dam exceeds a value of about 0.67h. A submergence
correction factor cg for broad-crested weirs [Venard, 1958] is computed
from the following:

= T/t
cs 1.0 hd/h €067 o o o o o o o o o o o (8)

e = 1.0 - 27.8(hé/h'—0.67)3 BIBIZ067 o e e e e e (9)

S

in which the prime superscripts i{ndicate that the submergence factor is
evaluated at a slightly previous time when all elevations are known.
The term hy is the elevation of the water surface immediately downstream

of the dam and is approximated from Manning's equation for a wide
channel, i.e.,

d
G R € 1)
d 11.49 s O'SBdJ

in which njy is the Manning roughness coefficient, Sy is the average
bottom slope of the river immediately downstream of the dam, and
Qé and B, are as previously defined.

The total instantaneous outflow (Q) from the dam is composed of the
flow (Qp) through the breach and the flow (Qg) through the dam spillway(s),
gates, and/or turbine discharges, and along the crest of the dam.
The Qg component is allowed to vary as the water surface elevation varies
until it recedes below the spillway, gate, OT dam crest elevations,
i.e., hg, hg, and hg, respectively.' Thus, an expression for the
total instantaneous flow (Q) is:

Q = Qb + Qs O T N T TR L A . (11)



where:

Q = Cs(h'-hs)3/2 + Cga(h'—hg)llz + Cd(h'-h°)3/2 Q oL 1)

in which Cs, C,, and Cq are the discharge coefficients for the spillway,
gates, and dam crest; and Qp is the constant turbine discharge, and
a is the gate area. '

Since Qp is a function of the reservoir water surface elevation (h),
the depletion of the reservoir storage by the outflow (Qp) causes a
decrease in h which simultaneously causes a decrease in Qp. However,
any inflow to the reservoir tends to cause h and Qp to increase.

In order to determine the total reservoir outflow Q as a function of
time, the simultaneous effects of reservoir storage depletion and

inflow require the use of a reservoir routing technique. The forecasting
model presented herein has the option to use two types of reservoir
routing, namely: (1) a hydrologic storage routing technique or .
(2) a hydraulic dynamic routing technique. A discussion of the features
of the latter will be delayed until after the downstream routing
technique is presented.

The hydrologic storage routing technique is based on the law of
conservation of mass or so-called storage equation, 1i.e.,

I - Q = ds/dt ® ® ¢ @ 2 2 e & o ¢ e & 0 o T o e 6 e e e @ .0 o e @ (13)

where I is the inflow during the differential time interval (dt), Q is
the outflow during the same interval, and dS is the change in reservoir
storage. The inflow (I) is a known function of time. The outflow Q is
a function of h and hy, the former an unknown function of time and the
latter a known function of time as defined by Eqs. (1-2). Writing

Eq. (13) in terms of finite differences yeilds:

(—Ii})-(gfgl)=-ﬁ—i-;....................... (14)

where the prime (') superscripts denote values at the time t-At and
the A approximates the differential. Upon rearranging Eq. (14), the
following is obtained:

248 "o I-1'=0
At +Q+Q I I 0 ........O'.,.'C..D.l. (15)

where:

A+ '
AS= _szs(h-h').,.......,,.....,..,....(16)
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in which Ag is the surface area of the reservoir and is a known function
of h. Upon substituting Eqs. (3), (11), and (16) into Eq. (15), the
following is obtained:

B D Gon) + oy (o)™ 4 ey hen )25 4 Q4 Q' < 1 1 = 0 a7y

Since Ag is a function of h and AL, h', c1> hpy 2, Qgs Q', I, and 1’
are known at time t, Eq. (16) can be solved for the unknown value of h
using Newton-Raphson iteration. Once h is obtained, Eqs. (3) and (11)
can be used to obtain the outflow (Q) at time (t). 1In this way, the
outflow hydrograph can be developed for each time (t) as t goes from
t=0 to some terminating time, say te. The advance in time is accomplished
by taking At time steps which are assigned magnitudes relative to the
time (1) at which the breach achieves its maximum size and when the
outflow usually achieves its maximum value. The At values are computed
according to the following criteria which results in minimal numerical
integration errors:

At = 0,027 tir..............(la)
At = 0.107 L= S (19)

Downstream Routing

After determining the hydrograph of the outflow at the dam, the extent
of flooding in the downstream valley is determined by routing the
outflow hydrograph through the valley.

The hydrograph is modified as it is routed through the valley due to
the effects of valley (channel) storage and frictional resistance.
If the channel is rectangular, the reach length short,and the frictiomal
resistance low, the hydrograph (flood wave) remains essentially unchanged
and may be treated as uniformly progressive flow. However, if the
rectangular channel is long and/or if the channel resistance is high,
the flood wave will be modified appreciably as it moves through the
channel. The modifications include attenuation of the flood peak,
spreading-out or dispersion of the flood volume, and changes in the
celerity (translation speed) or travel time of the flood. If the channel
contains significant storage volume downstream of the dam, such as a
gradual or sudden increase in channel (valley) width, the flood wave
can be extensively attenuated and its time of travel greatly reduced.

A distinguishing characteristic of dam-break flood waves is the great
magnitude of the peak discharge when compared to runoff-type floods
which have occurred in the same valley. The dam-break flood is usually
many times greater than the runoff flood of record. This results in
much higher velocities associated with dam-break floods than other floods
and causes an increase in the modifying effects due to cross-sectional
expansions and contractions. Also, the above-record discharges of
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the dam-break flood make it necessary to extrapolate certain coefficients
used in various routing techniques and make it impossible to fully
calibrate the routing technique.

Another distinguishing characteristic of dam-break floods is the very
short time base and particularly the extremely short time from beginning
of rise until the occurrence of the peak discharge. The time to peak
may have values ranging from only a few minutes to usually no more
than a few hours. This feature, coupled with the great magnitude of
the peak discharge, causes the dam-break flood wave to have acceleration
components of a far greater significance than those associated with
floods generated by precipitation runoff. Thus, routing techniques
which include acceleration effects are desirable for treating dam~break
floods.

There are two basic types of flood routing, the hydrologic method and
the hydraulic method. The hydrologic method is more of an approximation
of the phenomena than the hydraulic method and is used for convenience
and economy of computation. It is most appropriate as far as accuracy
is concerned when the flood wave is not rapidly varying (acceleration
effects are negligible) and when the flood wave is similar in shape
and magnitude to previous floods for which observations of stage and
discharge hydrographs are available for calibrating the necessary
routing coefficients.

The hydraulic method is chosen for the downstream routing component
of the dam-break flood forecasting model presented herein. This choice
is based on its potential for providing a significant advantage in
accuracy over the hydrologic method while requiring a very reasonable
amount of computational effort by an IBM 360/195 computer, the machine
available for NWS forecasters. Accuracy and computational effort will
be discussed later when the results of testing the forecast model are
presented.

Although there are also simplified hydraulic routing techniques such
as kinematic or diffusion routing, they are not chosen because of the
importance of the acceleration effects associated with dam~break floods
and the relative insignificant savings in computational effort afforded
by such simplifications. Instead, the dynamic routing technique is
chosen.

Dynamic Routing.--This type of hydraulic routing technique is based on
the complete one-dimensional equations of unsteady flow, whose original
derivation is attributed to Barré de Saint-Venant [1871]. The applica-
bility of the Saint-Venant equations to simulate abrupt waves such as
the dam-break wave has been demonstrated by Terzidis and Strelkoff [1970]
and by Martin and Zovmne [1971].
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The conservation form of the unsteady flow equations, in which the
dependent variables are discharge (Q) and water surface elevation (h),
consists of two equations. The first is based on the principle of
conservation of mass and is:

3(A+A°)

Q. o .-
ax+ at q0--..»0.;.-0--.0,..:.--.(zo)

where A is the active cross-sectional area of flow, A, is the inactive
(off-channel storage) cross-sectional area, x is the longitudinal distance
along the channel, t is the time, and q is the lateral inflow or outflow
per lineal distance along the channel (inflow is positive and outflow

is negative). The second equation is based on the principle of conser-
vation of momentum and is: ‘

2
h
%%+§%&+3A(—g—>;-+sf+sce)=o" Y 3 )

where g is the acceleration due to gravity, S¢ is the friction slope,
and Sge is the expansion-contraction slope. The friction slope is
evaluated herein from Manning's equation for uniform, steady flow, i.e.,

) ,
s - _nlalQ 22)

£ .01 a2 g4/3 )

in which n is the Manning roughness coefficient and R is the hydraulic
radius defined herein as A/B where B is the top width of the active
cross-sectional area. The contraction-expansion slope is defined by
the following:

k AV

Sce = 28 Ax ¢ o s s o e @8 & e s & e 2 8 s s s e & s+ e 2 2 s s s o (23)

in which k is the expansion-contraction coefficient varying from 0.0 to
1.0 (positive if contraction and negative if expansion), AVZ is the
difference between the square of the velocities at two adjacent cross—
sections separated by a distance, Ax. The lateral inflow (outflow) term
(q) is not included in Eq. (21) since in this paper the lateral flow is
assumed to enter or exit with no velocity component in the x-directiom.

Eqs. (20-21) constitute a system of partial differential equations of
the hyperbolic type. They contain two independent variables, x and t,
and two dependent variables, h and Q; the remaining terms are either
functions of x, t, h, and/or Q, or they are constants. These equations
are not amenable to analytical solutions except in cases where the
channel geometry and boundary conditions are uncomplicated znd the
non-linear properties of the equations are either neglected or made
linear. The equations may be solved numerically by performing two
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basic steps. First, the partial differential equations are represented
by a corresponding set of finite difference algebraic equations; and
second, the system of algebraic equations is solved in conformance with
prescribed initial and boundary conditions.

Numerical Solution.--Eqs. (20-21) can be solved by either explicit or
implicit finite difference techniques [Liggett and Cunge, 1975].
‘Explicit methods, although simpler in application, are restricted by
mathematical stability considerations to very small computational

time steps (on the order of a few minutes). Such small time steps

cause the explicit methods to be very inefficient in the use of computer
time. Implicit finite difference techniques [Preissmann, 1961; Amein ,
and Fang, 1970; Strelkoff, 1970], however, have no restrictions on the
size of the time step due to mathematical stability; however, convergence
considerations may require its size to be limited [Fread, 1974a].

Of the various implicit schemes that have been developed, the "weighted
four-point" scheme first used by Preissmam [1961] and recently by
Chaudhry and Contractor [1973] and Fread [1974b] appears most advantageous
since it can readily be used with unequal distance steps and its
stability-convergence properties can be controlled easily. 1In the
weighted four-point implicit finite difference scheme, the continuous
x-t region in which solutions of h and Q are sought is represented by
a rectangular net of discrete points. The net points are determined
by the intersection of lines drawn parallel to the x and t axes.

Those parallel to the x axis represent time lines; they have a spacing
of At, which need not be constant. Those parallel to the t axis
represent discrete locations or nodes along the river (x axis); they
have a spacing of At, which also need not be constant. Each point in
the rectangular network can be identified by a subscript (i) which
designates the x position and a superscript (j) which designates

the time line.

The time derivatives are approximated by a forward difference quotient
centered between the ith and 1+1 points along the x axis, i.e.,

R0 U RO I
K37+ kT - K] - K
9K _ i 14 " 1" i 2

—
- s e » & * e e e & . . . .

t 2 Atj

where K represents any variable.

The spatial derivatives are approximated by a forward difference
quotient positioned betweén two adjacent time lines according to
weighting factors of 6 and 1-6, i.e.,

j+1 j+1 j -J
K - K; K -
BK._.Q[_i_'H‘____}._].;.(]_-e) [_lt]:_..__i] e e e e e e e

I B By, (25)
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Variables other than derivatives are approximated at the tipme level
where the spatial derivatives are evaluated by using the same
weighting factors, i.e.,

KU Kt K |
K ~ e “-2'——— + (l-e) —_—Tﬁ— * e o « e e o L I A Y (26)

AS weighting factor of 1.0 yields the fully implicit or backward
difference scheme used by Baltzer and Lai [1968]. A weighting factor
of 0.5 yields the box scheme used by Amein and Fang [{1970]. The
influence of the 0 weighting factor on the accuracy of the computations
was examined by Fread [1974a], who concluded that the accuracy decreases
as 6 departs from 0.5 and approaches 1.0. This effect becomes more
pronounced as the magnitude of the computational time step increases.
In this paper, a weighting factor of 0.60 is used so as to minimize
the loss of accuracy associated with greater values while avoiding the
possibility of a weak or pPseudo instability noticed by Baltzer and Lai
[1968, Chaudhry and Contractor [1973].

When the finite difference operators defined by Eqs. (24-26) are used
to replace the derivatives and other variables in Egs. (20-21), the
following weighted four-point implicit difference equations are obtained:

j+1 j+1 3 3
Q.7 - Q . Q.. - Q! .
i+l i j+1 _ i+l it _ j
= “0ay T+ (16) | - (1-0) o
i i
j+1 i+l i j ]
. (A+Ao) i (A+Ao)i +1 (A+A°) 1 (A+Ao) 4] _ . -
At, —} Y . . . . - . .
h|
( s . . . .
j+1 J*l _ ] _Ad 2 j+l _ 2 j+1
G  * Qi+l Qi Qi‘l"l + 8 Q°/4) i+l Q/ A)i
Atj Axi
¥l 4+ ﬂ 2,3 2, j
h - h; . . Q /A - (Q7/A):
—j+1 | Ti+1 i —j+1 3+ _ j+1 i
+g A &, +5; +s)7 J + (1-8) ix;
hj - h .
—j | i+l i, =j 3 -
+ g A 7 +sf+sCe 0...............(28)
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where:

A= (A, + A2 AR ¢ 1)

iHl

/3

's"f=nz?i|’d|/(2.2I2 ) ST & )

Q=(Qi+Qi+1)/2 S 1 9

wi

= o

B= (B

=|

¢ ® 8 ® & & & & 4 ¢ 4 0+ 5 e s o 8 " s s o & o S ¥ & O o o (32)

i +Bi+1)/2 e & o & % 3 ¢ e 3 ¢ s e 8 ¢ & o & s = s s * o (33)

The terms associated with the jth time line are known from either the
initial conditions or previous computations. The initial conditions
refer to values of h and Q at each node along the x axis for the first
time line (j=1).

Eqs. (27-28) cannot be solved in an explicit or direct manner for the
unknowns since there are four unknowns and only two equations. However,
if Eqs. (27-28) are applied to each of the (N-1) rectangular grids
between the upstream and downstream boundaries, a total of (2N-2)
equations with 2N unknowns can be formulated. (N denotes the total
number of nodes.) Then, prescribed boundary conditions, one at the
upstream boundary and one at the downstream boundary, provide the
necessary two additional equations required for the system to be
determinate. The resulting system of 2N non-linear equations with 2N
unknowns is solved by a functional iterative procedure, the Newton-
Raphson method [Amein and Fang, 1970].

Computations for the iterative solution of the non-linear system are
begun by assigning trial values to the 2N unknowns. Substitution of
the trial values into the system of non-linear equations yields a set
of 2N residuals. The Newton-Raphson method provides a means for
correcting the trial values until the residuals are reduced to a suitable
tolerance level. This is usually accomplished in one or two iteratioms
through use of linear extrapolation for the first trial values.

If the Newton-Raphson corrections are applied only once, i.e., there
is no iteration, the non-linear system of difference equations
degenerates to the equivalent of a quasi-linear differemce formulatien
which may require smaller time steps than the non-linear formulation
for the same degree of numerical accuracy.

A system of 2N x 2N linear equations relates the corrections to the
residuals and to a Jacobian coefficient matrix composed of partial
derivatives of each equation with respect to each unknown variable
in that equation. The coefficient matrix of the linear system has a
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banded structure which allows the system to be solved by a compact
quad-diagonal Gaussian elimination algorithm [Fread, 19711, which is
very efficient with respect to computing time and storage. The required
storage 1s 2N x 4 and the required computational steps are approximately
38N.

Boundary Conditions.--The upstream boundary condition immediately
downstream of the dam is the reservoir outflow hydrograph Q(t) which
is computed as described in the previous section. This boundary
condition is given by the following:

M-y =0 (34)

The downstream boundary condition is a stage-discharge relation for
non-uniform, unsteady flow. It is expressed in terms of the Manning
equation in which the friction slope S¢ is evaluated by a backward
difference approximation of Eq. (21) in which Sce 1s assumed negligible.
This boundary condition is given by the following:

'+1/B§I+1)2/3 s1/2

3l _ 1.49 ,5HL 7 ,
% n Ay £ =0, . i, (39

where:

3 _yd §H_o3 2,003 _ (@2/myi
) [hN | (% QN] _|@img - @ /A)N_J

s = L - N 13
£ . g A Ath g A bx, J

in which:

K=(A§_1+A§)/z.................... . (37)

Eq. (35) reproduces the hysteresis effect in stage—discharge relations
often observed as a loop-rating curve. The loop is produced by the
effect of the acceleration and water surface slope tarms in Eq. (21).

Initial Conditions.--The initial conditions represent the known or
assumed values of Q and h for all nodes along the downstream channel.
Steady flow is assumed as the initial condition with the discharge
allowed to vary along the channel reach according to the following
linear relationship:

(xi*xl) j=1

o ol J_ody 21 717
Qg =Qq + (- Gy = %y i=12“N........(3sz)
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where Qj is the known or estimated discharge at the downstream boundary
at time t=0, and x is the distance downstream of the dam. The initial
water surface elevation (hg) for each node is computed from Manning's
equation for steady flow, normal depth conditions, i.e.,

Ad/3 .
=1 _1.49 i 1/2 (
Qi —-TBT-E so/ = 0 i = l, 2’ LI N - . . . - [ . . (39)
i

where S° is bottom slope of the channel, A and B are known functions of
the unknown water surface elevation (h). Eq. (39) is solved for h by
Newton-Raphson iteration. An initial condition of >0 must be specified.
Computational problems (of the form of computed depths which yield
gfgative cross—sectional areas) are associated with the degree that

i approaches a zero value. :

Supercritical Flow.-The previous boundary conditions are applicable when
the flow is subcritical, i.e., the velocity is less than the celerity
of an infinitesimal gravity wave or, :

V<VEATB . . . i it e I T (1)

When the flow occurs in channels having very steep bottom slopes, it
may become supercritical, i.e.,

V2VBA/B v v i i e e e e e e e e e e e e R (A )

When the flow is supercritical, the theory of characteristics as applied
to hyperbolic partial differential equations dictates the necessity for
two upstream boundary conditions while eliminating the need for a
downstream boundary condition. In addition to Eq. (34), a stage-
discharge relation similar to Eq. (35) is used at the upstream boundary.
This relation is based on the Manning equation for non-uniform, steady
flow as follows:

Qiﬂ _ 1.i9 A{ﬂ (Ai+l/BJl'+1)2/3 Y20 (42)

where:
S=(hi-—h';)/Axl e

A modified compact quad-diagonal Gaussian elemination algorithm similar
to the one previously described is required for solving the unsteady
flow equations when supercritical flows exist. This results when tha
form of the Jacobian coefficient matrix is slightly changed due to the
need for two upstream boundary conditions and none at the downstream
boundary. The dam-break flood forecasting model is constructed to

.
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accommodate supercritical flow for either the entire channel reach or for
only an upstream portion of the entire reach. The supercritical flow
regime is assumed to be applicable throughout the duration of the flow.

Lateral Outflow (q).--Often in the case of dam-break floods where the
extremely high flows inundate considerable portions of channel overbank
or valley bottom, a measurable loss of flow volume occurs. This is due
to infiltration into the relatively dry overbank material, detention
storage losses, and sometimes short-circuiting of flows from the

main valley into other drainage basins via canals or overtopping natural
ridges separating the drainage basins. Such losses of flow may be
taken into account via the term q in Eq. (20). An expression describing
the loss is given by the following:

qm=—o.ooasavLP/(L’f)..................... (64)

in which V; is the outflow volume (acre-ft) from the reservoir; P is

the volume loss ratio; L is the length (mi) of downstream channel
through which the loss occurs; and T is the average duration (hr) of

the flood wave throughout the reach length L; and qqm 1s the maximum lateral
outflow (cfs/ft) occurring along the reach L throughout the duration

of flow. The mean lateral outflow is pgopgrtioned in time and distance
;i::? the reach L such that qg-o when Qy=Q; and qiqu when Qi—Qmaxi'

;  @-ad | s
q = . 0 . . Y » . . . e . . . ¢« . . . . s . . o . .
i (Qmaxi-QIi) I

whera Q% is the initial flow and Qmax; is the estimated maxinum flow at
each node determined a priori according to an exponential attenuation
of the peak flow at the dam. The parameter P nay vary from only a few
percent to more than 30 depending on the conditions of the downstrean
valley.

Selection of At and Ax.--Rapidly rising hydrographs such as the dam-break
outflow hydrograph can cause computacional problems (instability and
non-convergence) when applied to numerical approximations of the
unsteady flow equations. This is the case even when an implicit,
non-linear finite difference solution technique is used. However,

the computational problems can be overcome by proper selection of time
step (At) size and the distance step (4x) size. During the limited
testing of the model presented herein, two types of computational
problems arose. First, if the time step were too large relative to

the rate of increase of discharge during that time step, errors occurred
in the computed water surface elevation in the vicinity of the wave
front. These water surface elevations would tend to dip toward the
channel bottom and quickly cause negative areas to be computed which
would then cause the computations to "blow up.” Second, too large a
time step would also cause the Newton-Raphson iteration to not converge.
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The first computational problem is similar to that experienced by
Cunge [1975]. Both of the computational problems were successfully
treated by reducing the time step size by a factor of 0.5 whenever
negative areas were computed or when a reasonable number of iterations
were exceeded, With the reduced time step, the computations were
repeated. If the same problems persisted, the time step was again
halved and the computations repeated. Usually one or two reductions
would be sufficient. The computational process was then advanced to
the next time level by the original unreduced time step. Computations
were initially begun with At time steps (hr) in the following range:

0,05 T<AE € 010 T o ¢ ¢« o o o o o o o s s o v.0 o o o o o o == (46)
in which T is the time (hr) to peak of the oucflowvhydrograph.

Distance steps Oxx)-were selected in the folloﬁing range:
0.1 SAX S 1u5 o o o o o ¢ o s o o o s s o o o o o s o v o o o 0o .(47)

where Ax is in miles. The dam-break hydrograph tends to be a very
peaked-type of hydrograph and as such tends to dampen and flatten out
as it advances downstream. For this reason, smaller values of Ax were
selected immediately downstream of the dam with a gradual increase in
size at greater distances downstream of the dam. Also, the smaller
values of Ax were associated with the smaller values of T. This
methodology of selecting Ax and At values follows the guidelines set
forth in an analysis made by Fread [1974a] of the numerical properties
of the four-point implicit solution of the unsteady flow equations.

Unlike the computational stability problem associated with explicit
finite difference solutions, the implicit solution only has problems
associated with the steep portion of the rising hydrograph in the
vicinity of the wave front and in regions of the channel immediately
downstream of the dam. Since the flood wave dampens out as it moves
downstream, the computational problems tend to vanish. This feature
of the dam-break wave can be taken advantage of with the implicit
solution procedure used herein to develop an efficient computational
procedure. This consists of increasing the At time step at an increasing
rate as the computations advance in time. The following scheme is used:

At = At P O 2:))
At = 1.005 At' TCEL2T v v v v o o o oo (49
At = 1.010 At' 2T < tS3T v v v v v oo o .o (50
At = 1.020 At' T < tE5T ¢ v v o o o o oo (31)
At £1.0 £50 « o o« o o o o o o oo oo (52)
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where At, is the initial time step, the prime superscript indicates
the previous time step, and At, Aty, At', t, and T are expressed
in hours.

Outflow Hydrograph via Dynamic Routing.--As mentioned earlier, an option
provided in the dam-break flood forecasting model is the use of dynanmic
routing rather than storage routing to compute the reservoir outflow
hydrograph. The dynamic routing is identical to the above description
with the exception of boundary and initial conditions. The upstream
boundary condition is a discharge hydrograph given by the following:

R O (53)

where I(t) is the known reservoir inflow hydrograph. The downstream
boundary condition is a stage-discharge relation similar to Eq. (3), i.e.,

j+1,2.5

1 1 .
gt _ J“)ls—cz(h%“-hb T =0 L L. (s4)

jHl
e lhy " -y
in which hy, ¢y, and ¢y are defined respectively by Egs. (1), (4), and
(5), and Qg is the spillway(s) discharge as previously defined. The
initial conditions are:

1

Q} = 1(t=0) i=1,2, ... ........ (55
1 =
hiﬂ ho i‘ l, 2, LA ) N . . L 3 LI (56)

where h, is the elevation of the water surface at the dam site when
failure commences. The reservoir dynamic routing procedurs must contend
with the lowering of the water surface elevation at the upstream
boundary as the reservoir volume is depleted by the outflow through

the breach. If this depth becomes small and approaches a value less
than the normal depth, the computations become unstable. To avoid this
computational problem, the upstream depth is constantly monitored;

if it becomes less than a specified critical depth (d.), the location
of the upstream boundary condition is shifted downstream one node at

a time until the depth at the node is greater than d..

DATA REQUIREMENTS

The dam-break flood forecasting model requires certain input data,
the type and quantity of which were an important consideration in the
development of the model. Model components were selected which
required data which were easily obtained by the forecaster and which
allowed the forecaster to determine the quantity of data to be used.
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The data required for the breach component of the model consists of
the following parameters:

(1) The time (1), in hours, from the start of the breach until
it reaches its final dimensions; this may range from a few minutes
to a few hours; its a priori specification is estimated by the
forecaster based an the type and condition of the dam; its specification
for updating forecasts is based on reports from observers;

(2) The bottom width (b), in feet, of the breach; a priori
specification of b may range from 0.5 < b/hy € 1.0 for well-constructed
earth and rock-fill dams to a value of b approaching the total width
of the dam for poorly constructed earth dams and masonry dams; b values
for updating forecasts can be obtained from observational estimates;

(3) The side slope (z) of the breach; a priori estimation of z
may range from 0 < z < 1 for earth and rock-fill dams, while z=0 is
appropriate for masonry dams; z values for updating can be obtained
from observational estimates;

(4) The final elevation (hpy), in feet, of breach bottom; this is
usually assumed to be the bottom of the dam unless tailwater elevations
are relatively high compared to hg;

(5) The reservoir length (L), in miles; and

(6) The elevation (hy,), in feet, of the water surface when failure
commences; unless otherwise observed, this is assumed to be the top
of the dam.

The outflow component requires the following data if storage routing
is selected: a table of reservoir surface ‘areas (Ag), in acres,
coincident with elevations (hA)’ in feet. Surface areas at any elevation
are linearly interpolated by the following interpolation formula:

(h—hi) ,
K=K, + h, $<h<h N ¢ 7))

= (K., ,K,) . i+l "
i (hi+1 hi) i+l i i i+l
where K is any interpolated value of a function, K(h).

The downstream routing component requires the following data:

(1) NS, number of downstream locations at which cross-sectional
properties are specified;

(2) M, number of values in table of cross-sectional properties
related to elevation;
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(3) xs, distance (mi) downstream of dam to location of specified
cross—-section;

(4) hs, (where m=1,2,...M), elevations (ft) at whichbctoss—
sectional properties are specified;

(5) Bsp (where m=1,2,...M), top width (ft) of active cross-—
sectional area;

(6) Bsoy (where m=1,2,...M), top width (ft) of inactive (off-
channel storagg) cross-sectional area;

(7) BO, average width (ft), and DO, average depth (ft) of cross-
section below hsj;

(8) n, (where m=1,2,...M), Manning roughness coefficient;
(9) k, expansion-contraction coefficient; and

(10) Dxm, minimum Ax distance between computational nodes (cross-
sectional areas).

Items (4)-(7) are specified for each of the NS cross-sectional locations.
Items (8)-(10) are specified for the (NS-1) reaches between the NS
cross-sections.

The As; (m=2,3,...M) values are computed from the following
trapezoidal approximation after Asy is computed as BO x DO:

Bs + Bs
m

5 ) m=2,3, ... M. .. (58)

-1
](hsm - hsm__l

As = Asm_1 + [

Additional cross-sections are computed via a linear interpolation
equation similar to Eq. (57) such that the minimum distance between
cross—sections is less than or equal to the specified Dxm values.
This feature enables only a minimum of cross-sectional data to be
specified by the forecaster according to such criteria as data
availability, data variation, etc. The cross-sectional data may be
extracted from cross-sectional surveys or Geological Survey
quadrangle maps, 7-1/2' series, scale 1:24000.

An option in the dam-break flood forecasting model is to specify NS
surface areas (SAp) rather than top widths. The surface areas may be
obtained via planimetering around a given contour of the quadrangle maps.
The surface areas are converted to top widths within the model.
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Additional data required are:

(1) The initial steady discharge QOD (cfs) at the dowmstream
boundary;

(2) The estimated maximum discharge QMAXD (cfs) at the downstream
boundary; if this is entered as zero, the model estimates it via an
exponential attenuation of the maximum outflow discharge;

(3) The maximum lateral outflow qn (ftzlsec) due to infiltration,
detention, or short-circuiting losses as computed by Eq. (44); and

(4) The initial At time step size (hr).

If the dynamic routing option is selected for computing the outflow
hydrograph, a similar type of data as used for the downstream routing
component is required.

MODEL TESTING
Teton Dam

The dam-break flood forecasting model was applied to the recent failure
of the Teton Dam, a typical earth-fill dam, 305 feet high, with a 3,000~
foot long crest located on the Teton River in southeasterm Idaho.

The dam failed on June 5, 1976, killing 11 people, making 25,000 homeless,
and inflicting about $400 million in damages to the Teton-Snake River
Valley downstream of the Teton Dam. The inundated area is shown in

Fig. 2. Observations were available on the approximate development
sequence of the breach, the temporal description of the reservoir

storage depletion, typical cross-sections and estimates of the Manning
roughness coefficient for sections of the downstream valley approximately
every 5 miles, indirect peak discharge measurements at three sites,

and a continuous discharge hydrograph at a location about 60 niles
downstream of the dam, flood peak travel times, and flood peak
elevations. The data were made available by the Geological Survey

in an unpublished report [Ray, et al., 1977].

The time of failure (T) was estimated to be in the range of 0.5 to
'1.5 hours. The following breach parameter values were used:
T = 1.5 hours, b = 150 feet, z = 0, hy, = 0.0 feet, Ly = 17.0 miles,
= 261.5 feet. Cross-sectional properties at 12 locations along
a 60-mile reach of the Teton-Snake River Valley below the dam were
used. The downstream valley consisted of a narrow canyon (approximately
1,000 feet wide) for the first 5 miles and a wide valley which
was inundated to a width of approximately 9.0 miles. Manning n
values ranging from 0.028 to 0,047 were provided from field estimates
by Geological Survey personnel., Minimum Ax values were gradually
increased from 0.5 mile near the dam to 1.5 miles near the downstream
boundary at the Shelly gaging station (valley mile 59.5 downstream
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from dam). The reservoir surface area-elevation values were obtained
fron Geological Survey quadrangle maps. Additional input data
included  the following:

(1) QoD = 13,000 cfs;
(2) QuAXD = 65,000 cfs;

(3) qm = -0.30 ftzlsec, computed from Eq. (44) using P = 0.25,
VL = 240,000 acre-feet, L = 59.5 miles, and T = 15 hours; and

(&) At, = 0.125 hour.

The reservoir storage routing option was used to generate the outflow
hydrograph shown in Fig. 2. A comparison of the outflow hydrograph
computed by the reservoir dynamic routing with that of the storage
routing option is shown in Fig. 3. The difference is quite small;
the peak of the storage routing is 4 percent greater than the dynamic
routing while the rising limb and recessions of the outflow hydrograph
produced by both routing techniques are almost identical.

The temporal variation of the computed outflow volume is shown in
Fig. 4 along with the observed values, There is an average absolute
difference of 2.7 percent between the observed and computed values.

The observed peak discharges obtained downstream from the Teton Dam
by indirect measurements after the flood at miles 8.5, 43.0, and 59.5
are shown in Fig, 5. Most apparent in this figure is the extreme
attenuation of the hydrograph peak. The computed hydrograph peaks
are also shown in Fig. 5 for two cases. In one, the field estimated
n values and an assumed 9n of 0.0 are used. In the other, the estimated
n values were adjusted so that observed and computed flood peak travel
times best coincided, and the lateral outflow (qp) was computed from
Eq. (44). The percentage loss parameter (P) was determined by comparison
of the observed outflow volume from the reservoir and the volume of
the observed hydrograph at the downstream boundary. The average
absolute difference between the observed and computed peak discharges
(using adjusted n values and a qn value of -0,30 ftz/sec) is 4.8 percent.
The extensive attenuation of the observed hydrograph is simulated
correctly by the model for both cases. This is due to the fact that
valley storage is the significant cause of the attenuation and the
cross—sectional areas appropriately describe this important
characteristic of the downstream valley.

The cross-sectional areas were proportioned into active cross-—
sectional area (A) and inactive cross-sectional area (A,) such that
the maximum width of active cross—sectional area was about 2 miles.
An attempt was made to model the flood using only active cross-
sectional area. This required a very large adjustment (increase)
of the estimated n values to simulate the correct flood travel tine.
Although the computed peak discharges were similar to those shown in
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Fig. 5, the flood peak elevations were much too high. It was therefore
concluded that an appropriate one~dimensional representation of the
downstream flood phenomena included a maximum flow width of 2 miles

and off-channel storage wherein the velocity was negligible relative

to that in the active flow area.

An a priori selection of the breach parameters (T and b) cause the
greatest uncertainty in forecasting dam-break flood waves. The sensi-
tivity of downstream discharges to reasonable variations in T and b for
the Teton Dam are shown in Fig. 6. Although there are large differences
in the peak discharges near the dam, these become rather insignificant
at locations more than about 15 miles downstream. The tendency for
extreme attenuation of dam-break flood waves is accentuated in the
case of the Teton Dam due to the existence of the very wide and flat
valley, the bounds of which are apparent by the inundated area shown
in Fig. 2. If the narrow canyon extended downstream all the way
to Shelly, the differences in peak discharges would not have been
damped-out to the extent shown in Fig. 6. Simulations of this type
of downstream condition indicated that the upstreanm differences were
more persistant at downstream locations. The differences at Shelly
for the case of the canyon extension were about 94,000 cfs while
those for the actual downstream valley were about 5,000 cfs as shown
in Fig. 6.

A profile of the observed peak flood elevations downstream of the
Teton Dam is shown in Fig. 7, along with the computed elevations using
adjusted n values and qp = -.30 ft%/sec. The average absolute error
is 1.5 feet while the average arithmetic error is only -0.2 foot.

The computed flood peak travel times are shown in Fig. 8 for the
simulation using the original estimated n values and the adjusted n
values. The latter was achieved through trial-and-error adjustments
of n to best match the observed travel times. The final adjusted
n values were about 7 percent less than the original estimates.
Sensitivities of the computed peak stages, discharges, and travel times
to changes in the Manning n were investigated for the Teton application.
A 20-percent change in the Manning n values produced the following
changes at the downstream boundary (Shelly):

(1) 0.5 foot in computed peak water surface elevations or about
2 percent of the maximum depth of flow;

(2) 15.7 percent deviation of the computed peak discharge;

(3) 0.8 percent change in total attenuation of peak discharge
incurred in the 60-mile reach from the Teton Dam to Shelly; and

(4) 14.6 percent change in flood peak travel time.

-185-



These results indicate that the Manninz n has a significant effect on
the travel time but a very minor effect on the total transformation of
the shape and magnitude of the dam-break flood wave as it advances
through this 60-mile reach of the Teton-Snake River Valley.

A typical simulation of the Teton application involved 78 Lx reaches,
55 hours of prototype time, use of the reservoir storage routing option
for computing the outflow hydrograph, and an initial time step Aty)
of 0.125 hours for the downstream dynamic routing component. Such a
simulation run required only 14 seconds of CPU time on an IBM 360/195,
i.e., the cost of a Teton Dam simulation run was approximately $2.

An additional 2 seconds was required if the reservoir dynamic routing
option were used.

Buffalo Creek Coal-Waste Dam

The dam-break flood forecasting model was also applied to the failure
of the Buffalo-Creek coal-waste dam which collapsed cn the Middle Fork,
a tributary of Buffalo Creek (see Fig. 9) in southwestern West Virginia
near Saunders. The dam failed very rapidly on February 26, 1972, and
released about 500 acre-feet of impounded water into Buffalo Creek valley
causing the most catostrophic flood in the state's history, with the
loss of 118 lives, 500 homes, and property damage exceeding $50 million.
Observations were available on the approximate development sequence of
the breach, the time required to empty the reservoir, indirect peak
discharge measurements at four sites, approximate flood peak travel
tices, and flood peak elevations [Davies, et al., 1972]. Cross-section
and estimates of the Manning roughness coefficients were taken from
a report on routing dam-break floods by McQuivey and Keefer [1975].

“he time of failure was estimated to be in the range of 5 minutes
and the reservoir took only 15 minutes to empty according to eyewitnesses
reports. The following breach parameters were used: T = 0.010 hours;
b = 130 feet; z = 3.0, hpy = 0.0 feet, Lg = 0.4 nmile, hy = 44.0 feet.
Cross-sectional properties were specified for eight locations along the
15.7-mile reach from the coal-waste dam to below Man at the conflusnce
of Buffalo Creek with the Guyandotte River as shcwn in Fig. 9. The
downstream valley widened from the rarrow width (approximately 100 ft)
of Middle Fork to about 400-600 feet width of Buffalo Creek valley.
Mininum Ax (Dxm) values were gradually increased from 0.2 rile near
the dam to 0.4 mile near Man at the downstream boundary. The reservoir
area-elevation values were cbtained from Davies et al. [1972].
Additional input data included the following:

(1) QOD = 1,000 cis;
(2) QMAXD = 36,000 cfs; and
3) qp = -0.68 ftzlsec, computed from Eq. (44) using P = 0.25,

vy, = 540 acre-feet, L = 15.7 miles, and T = 0.5 hour.
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The 15.7-mile reach was divided into two reaches; one was approximately
4 miles long, in which the very steep channel bottom slope (84 ft/mi)
produced supercritical flows, and the second extended on downstream
approximately 12 miles, with an average bottom slope of 40 feet per mile,
in which subcritical flows prevailed. An initial time step (At,) of
0.010 hour was used in the downstream subcritical reach. The computa-
tions were unstable when the supercritical reach was modeled using the
same type of boundary conditions as used with subcritical flows.
This computational problem was eliminated when the supercritical
boundary conditions Eq. (34) and Eq. (42) were used.

The reservoir storage roufing option was used to generate the outflow
hydrograph shown in Fig. 9. The computations indicated the reservoir
was drained of its contents in approximately 15 minutes, which agreed
with the observed time to completely empty its contents. The indirect
measurements of peak discharge at miles 1.1, 6.8, 12.1, and 15.7.
downstream of the dam are shown in Fig. 10. Again, as in the Teton
Dam flood, the flood peak is greatly attenuated as it advances downstrean.
Whereas the Teton flood peak was attenuated by a factor of 0.65 in the
first 16 miles of which 11 miles included the wide, flat valley below
the Teton Canyon, the Buffalo Creek flood was confined to a relatively
narrow valley but was attenuated by a factor of 0.87 in the same
distance. The attenuation of the Buffalo Creek flood was due to the
much smaller volume of its outflow hydrograph compared with that of the
Teton flood.

In Fig. 10, the computed discharges agree favorably with the observed.
There are two curves of the computed peak discharge in Fig. 10, one is
associated with n values of 0.040. 1In the former, the n values are
representative of field estimates while the latter results from
adjustments in the n values such that computed flood travel times
compare favorably with the observed. (Comparison of computed flood
travel times with the observed are shown in Fig. 11 for estimated
n values and for the final adjusted n values.) It should be noted
that the two computed curves in Fig. 10 are not significantly different
although the n values differ by a factor of 1.75. Again, as the Teton
application, the n values influence the time of travel much more than
the peak discharge. The large adjusted n values appear to be appropriate
for dam-break waves in the near vicinity of the breached dam where
flows are highly turbulent.

A profile of the observed peak flood elevations downstream of the
Buffalo Creek coal-waste dam is shown in Fig. 12, along with the
computed elevations using adjusted n values. The average absolute
error is 1.8 feet and the average arithmetic error is -0.9 foot.

Sensitivities of the computed downstream peak discharges to reasonable
variations in the selection of breach parameters (T, b, and z) are
shown in Fig. 13. The resulting differences in the computed discharges
diminish in the downstream direction. Like the Teton dam-break flood
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wave, crrors in forecasting the breach are damped-out as the flood
advances downstream.

A typical simulation of the Puffalo Creek flood involved 63 Ax reaches,
3.6 hours of prototype time, use of the reservoir storage routing option,
and initial time steps of 0.005 and 0.01 hour for the supercritical and
subcritical downstream reaches, respectively. Computation time for
a typical simulation run was 9 seconds (IBM 360/195).

SUMMARY AND CONCLUSIONS

A dan-break flood forecasting model is described and applied to two
actual dam-break flood waves. The model consists of a breach component
which utilizes simple parameters to provide a temporal and geometrical
description of the breach. A second component computes the reservoir
outflow hydrograph resulting from the breach via a broad-crested weir-
flow approximation, which includes effects of submergence from downstream
tailwater depths and corrections for approach velocities. Also, the
effects of storage depletion and upstream inflows on the computed
outflow hydrograph are accounted for via either storage or dynamic
routing within the reservoir. The third component consists of a
dynamic routing technique for determining the modifications to the
dam-break flood wave as it advances through the downstream valley,
including its travel time and resulting water surface elevations.

The dynamic routing component is based on a weighted, four-point,
non-linear finite difference solution of the one-dimensional equations
of unsteady flow. Provisions are included for routing supercritical
flows as well as subcritical flows.

Model data requirements are flexible, allowing minimal data input
wher. it is not available while permitting extensive datz to be used
when appropriate. -

The mod~l was tested on two recent dam-break flcod waves, the Teton
Dam failure and the collapse of the Buffalo Creek coal-waste dam.
Computed outflow volume through each breach coincided with the observed
values in magnitude and timing. Observed peak discharges along the
downstream valley were satisfactorily reproduced by the model in each
case even though each flood wave was severely attenuated as it advanced
downstream. The computed peak flood elevations were within an average
of 1.5 to 1.8 feet of the observed maximum elevations. Flood peak
travel times were usad to determine the apprcpriate Manning n coefficients,
cince this characteristic of the flood wave was significantly more ’
sensitive to the roughness parameter than either discharge or water
surface elevation. The Teton simulaticn required very small adjustments
of n, however, the Buffalo Creek simulation required the estizmated n
values to be increased by a factor of 1.75. Each application indicated
an important lack of sensitivity of downstream discharge to errors in
the forecast of the breach size and timing. Such errors produced
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significant differences in the peak discharge in the .vicinity of the dam;
however, the differences were rapidly reduced as the wave advanced
downstream. This feature of the dam-break wave is related to the extent
of storage volume in the reservoir. As the volume increases significantly
beyond that associated with the test cases of this paper, the attenuation
is significantly reduced and discharge errors at the dam will be more
persistant in the downstream direction.

Computational requirements of the model are quite feasible; CPU time
(IBM) 360/195) was 0.004 second and 0.159 second per hour per mile of
prototype dimensions for the Teton Dam and Buffalo Creek, respectively.
The more abrupt and smaller Buffalo Creek wave required smaller At and
Ax steps; however, total computation times (9 sec vs. 14 sec) were similar
since the smaller wave attenuated to insignificant values in a shorter
distance and in less time than the Teton flood wave.
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